$7^{\text {th }}$ International Earth Science Olympiad

Theoretical Test

Astronomy Model Answers

A1. Atmosphere of Planets

See table: $\mathbf{+} \mathbf{0 . 5}$ points for each correct marking, $\mathbf{- 0 . 2}$ for each wrong marking.
A2. For winter solstice,

$$
\begin{aligned}
\mathrm{a}_{\mathrm{w}} & =90-\phi-\varepsilon \\
\mathrm{a}_{\mathrm{s}} & =180-(90-\phi+\varepsilon) \\
& =90+\phi-\varepsilon \\
\varepsilon & =23^{\circ} 26^{\prime} \\
\phi & =12^{\circ} 17^{\prime}
\end{aligned}
$$

Using these, Inclination of the Earth's axis,
(1.5 points for each of the four steps)

A3. Pluto and charon:

(a) By Kepler's Third Law, $a_{0}^{3}=\frac{G\left(M_{p l}+M_{c h}\right) T^{2}}{4 \pi^{2}}=\frac{9 G M_{p l} T^{2}}{32 \pi^{2}}$

Hence $a_{0}=1.96 \times 10^{7} \mathrm{~m}$
(b) The distance of barycentre from Pluto will be $\mathrm{a}_{0} / 9$.
(1.5 points)

By comparing, a:b $=\frac{a}{b}=\frac{1.965 \times 10^{7}}{9 \times 1.195 \times 10^{6}}=1.83$
(1 point)
(1 points)
(c) One should try to resolve the Pluto-charon system, when the Pluto is closest to the Earth as thats when the angular separation will be highest.
(0.5 point)
Let us say we are using optical wavelengths around 550 nm (a slightly better approximation will be to use blue end of visible light around 400 nm)

$$
\begin{equation*}
D=\frac{1.22 \lambda}{\theta}=\frac{1.22 \lambda d_{p l}}{a_{0}} \approx 15 \mathrm{~cm} \tag{1.5points}
\end{equation*}
$$

A4. H-R diagram
(a) Star of Largest Diameter
B Star of Smallest Diameter C
(2 points)
(b) \mathbf{D} and \mathbf{F}
(c) \mathbf{A}, \mathbf{E} and \mathbf{F}
(d) C

