STOP 10 15' **Practical activity - Remote Sensing** Processing and analysis of digital satellite imagery

Instructions

Download the data (Landsat satellite imagery of Venice

- Generate computerised colour images in
 - o True colour
 - o False colour
- Answer the questions

1) Data Download

Download all files from http://download.terra.unimore.it/ieso/ and save them on the Desktop (double clicking on every file)

2) Open the satellite imagery

a) Start the LEOWorks3.0 programme (clicking on the Windows Start button)

Born the following files and press **OK** on the **Image Preview** window (cf. Fig.1):

- Venice Band 1.tif (channel 1, blue)
- Venice Band 2.tif (channel 2, green)
- Venice Band 3.tif (channel 3, red)
- Venice Band 4.tif (channel 4, near infrared NIR)
- Venice_Band_5.tif (channel 5, short wavelength infrared SWIR)

Fig.1: Image Preview window

Venice_Band_7.tif (channel 7, short wavelength infrared) SWIR)

3) True-colour combination of spectral bands: generate a real colour image

- In the Menu bar click on: **Image** \rightarrow **Combine from...** \rightarrow **[Red Green Blue]**, a new window called **Combine RGB** appears (cf. Fig.2)
- On the three input windows select the bands:
 - a) for red (Select Red Band) select Venice Band 3,
 - b) for green (Select Green Band) select Venice_Band_2
 - c) for blue (Select Blue Band) select Venice_Band_1.

 Verballandes Carol Loffic J. 		
R. Arright Holes (A. 191)		*
	- d d Carlos Con	
marker - 1	Verser Landol An Dige Lan	<u>.</u>

Fig.2: Combination of the spectral bands

Carter	
	•
Country	

Name:

- 26

-

Fig.3: False colour

Wince Landact Band 3 +

infrared

combination

Select Red Band Vertice Landsat Band 4 7

Select Due Band Venice_Landset_Uand_2 🔻

Output Type Dyte

0.0

• Clicking **OK** the combined true-colour image appears.

Keep it open in order to compare it with the next results.

- 4) False-colour combination: generate an infrared false colour image
- Repeat the steps of point 3) choosing now the following association of spectral bands (st. Fig.3):
 - a) for red select Venice Band 4,
 - b) for green select Venice Band 3
 - c) for blue select Venice Band 2.
- Clicking on **OK** you obtain now an infrared false colour image of Venice.

Keep it open in order to compare it with the next results.

- 5) Try another combination: generate a different false colour image using other spectral bands (754)
- Repeat the steps of point 3) choosing now this association of spectral bands (cf. Fig.4):
 - a) for red select Venice Band 7,
 - b) for green select Venice Band 5
 - c) for blue select Venice Band 4.
- Clicking on **OK** you obtain now a different false colour image of Venice.

You have now created three different combined images of the same subject. Observe and compare them in order to answer the following questions.

Fig.4: False colour 754 combination

Questions

Only one answer per question is correct, mark the right one. Every right answer corresponds to 0.35 points. 15'

The LANDSAT system constitutes the longest continuous record of the Earth surface

- 1) The Landsat satellite is
 - a) polar b) geostationary
- 2) Landsat is used
 - a) for weather applications
 - b) land use
 - c) to constantly monitor a localised region on the Earth surface
 - d) none of them

The geometrical resolution of an image is the size of the pixels in meters.

- 3) Given that the Landsat images cover an area of 20 km \times 20 km and that there are 500 \times 500 pixels in the image, which is its resolution?
 - a) 20
 - b) 40
 - c) 400
 - d) no answer is correct

In this practical activity you used different spectral bands, every single image reflects a part of the electromagnetic spectrum

- 4) Which of the following bands are outside the visible spectrum?
 - a) red
 - b) red and NIR
 - c) near and middle infrared
 - d) green and blue

The combined images are, respectively, true- and false-colour combinations of the three visible channels red, green, blue, or further spectral channels of a Landsat scene.

- 5) False-colour images are used to
 - a) increase the interpretability of satellite images
 - b) provide visually impaired people a mean for detecting the same features in land use

Comparing the combined images obtained from steps 3), 4), 5) in the Instruction sheet:

- 6) The colours of the different features of the soil depend on the bands selected for the combination, because every object has its own radiation characteristics
 - a) true; b) false
- 7) Which channel is best suited to give information regarding vegetation?
 - a) green
 - b) infrared
 - c) red
 - d) none of them
- 8) The infrared range is very useful for interpreting the Earth's surface becausea) it consists of reflected and emitted energy
 - b) it gives information about the vitality/health status of the vegetation
 - c) none of them
 - d) both of them

Referring to the image obtained combining the spectral bands 7, 5, 4:

- 9) For which application is this combination useful?
 - a) to detect coast lines and shores that are well defined due to this combination
 - b) to find textural and moisture characteristics of soils
 - c) both of them
 - d) none of them
- 10) In combined image 754, vegetation appears to be
 - a) red

Name:		
Country:		

c) blue